Study: Painting with bacteria could revolutionize wastewater treatment

Sept. 3, 2020
Researchers from the University of Surrey investigated and improved the properties of biocoatings, which could have applications for wastewater treatment moving forward.

SURREY, UK -- Researchers from the University of Surrey investigated and improved the properties of biocoatings, which consist of a polymeric layer that encapsulate bacteria. When inside the coating, the bacteria do not grow or divide, but they can still perform useful functions, such as absorbing toxins or carbon dioxide. Although other researchers have previously manufactured biocoatings, the bacteria did not stay alive for long, which limited their use. It is necessary for biocoatings to have a permeable structure to allow water and nutrients to enter and keep the bacteria alive, and to allow byproducts to escape.

To improve the effectiveness of using bacteria in the field of waste management and in the production of biomass and biofuel gases, the Surrey researchers sought to resolve the issue of permeability in biocoatings, key to the survival of the bacteria within. They used halloysite, which consists of natural low-cost and microscopic tubes of clay, previously used as a reinforcement for plastic materials. The tiny halloysite tubes created channels in the biocoating to raise the permeability.

Using a specially adapted resazurin reduction assay, the researchers found that bacteria encapsulated in halloysite biocoatings were statistically more likely to stay viable compared to bacteria in the ordinary biocoatings. They determined that a coating made up of 29 percent halloysite had the best combination of good mechanical strength and high permeability. Importantly, fluorescence microscopy determined that the bacteria remained viable and metabolically active for extended periods of time. In the future, viable bacteria could be used to clean polluted water by removing harmful chemicals.

The research was funded by a Research Project Grant from The Leverhulme Trust and conducted by Dr Phil Chen (University of Surrey), Simone Krings (University of Surrey) and in collaboration with Joshua Booth (University of Warwick) and Professor Stefan Bon (University of Warwick).

Sponsored Recommendations

NFPA 70B a Step-by-Step Guide to Compliance

NFPA 70B: A Step-by-Step Guide to Compliance

How digital twins drive more environmentally conscious medium- and low-voltage equipment design

Medium- and low voltage equipment specifiers can adopt digital twin technology to adopt a circular economy approach for sustainable, low-carbon equipment design.

MV equipment sustainability depends on environmentally conscious design values

Medium- and low voltage equipment manufacturers can prepare for environmental regulations now by using innovative MV switchgear design that eliminates SF6 use.

Social Distancing from your electrical equipment?

Using digital tools and apps for nearby monitoring and control increases safety and reduces arc flash hazards since electrical equipment can be operated from a safer distance....